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ABSTRACT 

The objectives of this study were human memorization and recognition processes in respect of 
2-D and 3-D objects sequences. In each trial we used six sequential slides, each of them 
containing a 2-D or 3-D bar located on the chessboard. This bar was positioned in one of 8x8 
(for 2-D) or 8x4x2 (for 3-D) locations. At the recognition stage there were the target and three 
distracters on each slide, the subject to recognize the target.  
It was shown that performance as well as memorization time and recognition time for the 3-D 
stimuli were significantly lower than for the 2-D ones. For the 3-D trial, the error distribution 
depended on whether the target and the chosen distracter had same or different binocular 
disparities. 
The data obtained were simulated by creating a model developed on the basis of bidirectional 
associative memory network. The model successfully reproduced the error distribution for the 
2-D sequences, but not for the 3-D ones if the target and the chosen distracter had different 
disparities. 
Thus, we conclude that the internal representation of 3-D objects fundamentally differs from 
that of 2-D objects. 
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1. INTRODUCTION 

One of the important attributes of object remoteness is the disparity, a difference between 
coordinates of object’s projections on eyes retinas. Sole disparity is sufficient for perception of 
the 3-D forms from the 2-D image (for example, from the random-dot stereogram1). It is 
widely believed that neurons responding to the disparity are a physiological basis of work of 
binocular vision system2, 3. The disparity was used for depth selection simulation starting from 
the models by Julesz1 and Marr4. Now there are models allowing for the fusion between images 
having different contrast. They also explain the phenomena of “attraction“ and “repulsion“ of 
disparities5. Complex artificial stereovision algorithms have practical use for many robotics 
applications6. 
It should be noted that importance of the 3-D information for depth perception of the real 
world objects was challenged by Grimson7. He believed that this information was used only for 
separation of objects from their background, as restoration of objects’ depth based on the 
disparity needs the exact calibration of the visual apparatus, which is beyond possibilities of the 
human visual system. 
There are multiple studies on representation of the 3-D information at perception. At the same 
time little is known about significance of 3-D attributes at storing. There are two opposite 
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points of view on this problem. According to the first one, human memory stores a 3-D 
representation of objects that is invariant to a viewpoint8. According to the second one, 
recognition of the real world objects by humans is based not on a 3-D map of disparities, but 
on a set of interconnected 2-D viewpoint-specific representations of the objects9. The latter 
approach is also used in robotics in few works on objects recognition10, 11. 
The literary data do not enable us to make the right choice between these approaches. E.g., it 
is known that the 3-D information is kept in working memory, but does not improve quality of 
complex scenes processing12; that saccadic system has access to the 3-D information retained 
in the short-term memory, however for a short time13. It is unclear whether the disparity is only 
auxiliary low level vision characteristic used for vergency eye movements and for the form 
reconstruction, or it is significant for high brain levels as an important scene parameter. In the 
latter case different internal representations of space can be used at perception and recognition 
of 2-D and 3-D objects. 
 

2. METHODS 

Usually the coding schemes are studied by analyzing the human performance of different static 
spatial configurations14. We use the different approach based on the analysis of error 
distribution at storing objects sequences15-17. It is supposed that errors are caused by the 
distortion of elements of internal representation in which objects are remembered, the 
distortion of a small number of elements being more probable. If the subject’s recall is wrong, 
the subject chooses the answer the internal representation whereof is "close" to the correct 
object. 
 
2.1. Psychophysical experiment 

 
Fig. 1. The recognition stage of experiment with 3-D bar. 



Within this approach, the stimuli enabling to estimate the quantitative closeness between the 
remembered objects are to be used. The subject should remember and after that immediately 
reproduce a sequence of six random displacements of a bar (a) on the 8 x 8 board or (b) on the 
8 x 4 board, the bar located in front of or behind the board plane (8 x 4 x 2 bar positions total). 
In the latter case, the bar disparity equals to ±0.15°, the anaglyph method is used for stereo 
presentation. 
At the recognition stage in every trial the subject gets to see the correct previous position and 
should make a choice between the correct position (target) and three distracters (fig. 1). The 
closeness measure between the chosen distracter and the target is Euclidian distance d 
measured in board cells (a) in 2-D or (b) in 3-D space. 
Twenty two subjects (age of 20-30 years) participated in experiments, for each there were 
carried out 3 series under (a) conditions and then 3 series under (b) conditions. 
 
2.2. Model 
Data obtained were simulated by creating the bidirectional associative memory network first 
proposed by Kosko18. At the memorization stage, the weight matrix W is calculated on the 
basis of a “chain” of vector pairs Zi-1 → Zi, i = 1÷6. Zi hold in binary form the position’s 
number i and bar coordinates (a) in 2-D or (b) in 3-D space. At the recognition stage the 
adaptive parts WXi and WDij of weight matrix19 are calculated for target Xi and for each 
distracter Dij, j = 1÷3. The network recalls the hypothetical target Xi’ and distracters Dij’ based 
on correct previous position Zi-1 and matrices (W + WXi) and (W + WDij) respectively. As an 
answer the network chooses target or one of distracters for which the Hemming distance || Xi - 
Xi’ || and || Dij - Dij’ || is minimal. 
10000 runs were carried out under (a) and (b) conditions. Due to ability of this network to 
make self-induced errors, it’s possible to compare the human performance with the artificial 
one. Thus, the simulation results were processed in the same way as the psychophysical results.  
 

3. RESULTS 

 
3.1. Psychophysical experiment 

It was shown that for 3-D stimuli the mean memorization time and the mean recognition time 
were significantly (p < 0.05) lower than for 2-D stimuli (Ta mem = 6.8 sec, Tb mem = 5.7 sec, Ta rec 
= 10.5 sec, Tb rec = 8.5 sec). 

 
Fig. 2. The dependency of correct answers on position’s number for 2-D and 3-D stimuli. 

On the contrary, the amount of correctly reproduced positions is significantly (p < 0.05, sign 
test) higher for 2-D than for 3-D stimuli (Na = 4.4, Nb = 3.6). This can be concluded from the 



dependency of correct answers on position’s number in the sequence. For all position’s 
numbers the percentage of correct answers is lower for 3-D stimuli (fig. 2). 
Distribution of human errors E from distance d between the chosen distracter and the target 
under (a) condition has maxima at d = 2 cells and d = 4 cells (fig. 3A). Distributions of human 
errors under (b) condition are significantly (p < 0.05, Mann-Whitney test) various, depending 
on whether the target and the distracter have the same (eq) or different (uneq) disparities. At d 
= 3 cells curve Eb eq has a minimum, and curve Eb uneq has a maximum (fig. 3B). 

 
Fig. 3. The distributions of human errors from distance between the target and the chosen distracter (A) 

in 2-D space, (B) in 3-D space. 

 
3.2. Simulation results 

The amount of positions correctly reproduced by our network does not depend on space 
dimensionality and positions’ number, it equals to 85%. 
Distribution of model errors E from distance d between the chosen distracter and the target 
under (a) condition also (as a distribution of human errors) has maxima at d = 2 cells and d = 4 
cells (fig. 4A). Distributions of model errors under (b) condition do not depend on whether the 
target and the distracter have the same or different disparities. At d = 3 cells both curves have 
a minimum, and at d = 4 cells they have a maximum (fig. 4B). These two model curves are 
similar to human error distribution when the target and the distracter have the same disparities. 

 
Fig. 4. The distributions of model errors from distance between the target and the chosen distracter (A) 

in 2-D space, (B) in 3-D space. 

 
4. DISCUSSION 

It should be noted that in the above experimental design it was not required to specially 
remember the depth. The problem of choosing the correct answer from four variants could be 
solved also by storing 2-D object coordinates. If it was so, in each 3-D slide the subject should 
remember one of 32 possible 2-D positions of the object. Thus, obviously, the distributions of 



errors from the distance would not depend on the object disparity. However, this is not the 
case (fig. 3B). 
The significant differences Ta mem > Tb mem, Ta rec > Tb rec as such can be explained by the fact that 
experiments with 3-D stimuli were carried out after experiments with 2-D stimuli, i.e. when 
subjects were already familiar with this test task. The significant difference Na > Nb as such can 
be explained by difficulty in the subject perception due to the use of the red-green glasses. 
However the combination of these significant differences indicates that various mechanisms are 
involved in 2-D and 3-D stimuli processing. 
The form of distribution Ea is similar to the form of error distributions at storing a sequence of 
random moves of a chess figure. It can be explained within the framework of the models using 
absolute 2-D coordinates15-17 for coding the objects (fig. 4A). Distributions Eb, as well as Ea, 
have more than one maximum that enables us to assume that absolute 3-D coordinates are 
stored in the human memory. However, only one of these two distributions can be reproduced 
by using the developed models, by increasing the vector Zi length (fig. 4B). 
Thus, we conclude that 3-D objects internal coordinates representation fundamentally differs 
from 2-D one. The indirect confirmation of this thesis is that the ventral regions of the cortex 
involved in the 3-D shape analysis do not perfectly overlap with the regions involved in the 
analysis of 2-D shape20. Apparently, the computational power of the human brain is sufficient 
for storing complex 3-D representations of the real world objects. We expect that as soon as 
new high-speed hardware becomes available, the robotics will also pay attention to complex 3-
D coding schemes in learning and recognition. 
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